Golden Horagram #Number by closeness of the convergent pairs to the root of the tree
#Wilson's number of The Wilson Scale Tree
Convergent pair of ET generators, and their levels of the scale tree

Formula for finding generator
Generator Quotient
= generator angle Generator Angle°
= generator interval Generator Interval in cents

Table of scale properties

RingL size
(cents)
s size
(cents)
RatioStep size
Order
5259.85 160.60
Phi
LLLLs
9160.60 99.25
Phi
sLsLsLsLL
1499.25 61.34
Phi
LLsLLsLLsLLsLs
2361.34 37.91
Phi
sLsLLsLsLLsLsLLsLsLLsLL

Notes: Converges on gold very early, at ring 4.

Table of consonant ratios approximated · how many instances of each in each scale

Consonant Ratio Approximated·Ring 5·Ring 9
13:8+0c @ 841c [16:13] 0 3
10:7+1c @ 619c [7:5] 0 2
11:7-3c @ 780c = 3 generations [14:11] 2 6
5:3-6c @ 879c [6:5] 0 1
7:6-7c @ 260c = generator [12:7] 4 8

Horagram
horagram 3 Mature rings: which rings of this horagram are mature

Route of generator up scale tree—gold dot shows point of convergence
tree route


Modes of the scales
(in cents)

Ring 5
101 Gold - GR - Mature

0 260 520 780 1039
0 260 520 780  940
0 260 520 680  940
0 260 420 680  940
0 161 420 680  940
  

Ring 9
111 Gold - Interlaced - Mature

0  99 260 359 520 619 780 879 1039
0 161 260 420 520 680 780 940 1101
0  99 260 359 520 619 780 940 1039
0 161 260 420 520 680 841 940 1101
0  99 260 359 520 680 780 940 1039
0 161 260 420 581 680 841 940 1101
0  99 260 420 520 680 780 940 1039
0 161 321 420 581 680 841 940 1101
0 161 260 420 520 680 780 940 1039

data table

MIDI files

MP3 files

|   Horagram & Scale Menus  |   NEXT  |